Guaranteed lower bounds on eigenvalues of elliptic operators with a hybrid high-order method

نویسندگان

چکیده

Abstract This paper introduces a novel hybrid high-order (HHO) method to approximate the eigenvalues of symmetric compact differential operator. The HHO combines two gradient reconstruction operators by means parameter $$0<\alpha <~1$$ 0 < α 1 and cell-based stabilization operator weighted $$0<\beta <\infty $$ β ∞ . Sufficient conditions on parameters $$\alpha $$\beta are identified leading guaranteed lower bound property for discrete eigenvalues. Moreover optimal convergence rates established. Numerical studies Dirichlet eigenvalue problem Laplacian provide evidence superiority new bounds compared previously available bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guaranteed lower bounds for eigenvalues

This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on arbitrarily coarse meshes based on some approximation of the corresponding eigenfunction in the nonconforming Crouzeix-Raviart finite element space plus some postprocessing. The efficiency of the guaranteed error bounds involves the global mesh-size and is proven for the large class of graded m...

متن کامل

Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods

The aim of the paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general conclusion herein is that if local approximation properties of nonconforming finite element spaces Vh are better than global continuity properties of Vh, corresponding methods will produce lower bounds for eigenvalu...

متن کامل

Lower Bounds for Eigenvalues of Elliptic Operators by Overlapping Domain Decomposition

In this paper, we consider a new approach to estimation from below of the lowest eigenvalues of symmetric positive definite elliptic operators. The approach is based on the overlapping domain decomposition procedure and on the replacement of subdomain operators by special low rank perturbed scalar operators. The algorithm is illustrated by applications to model problems with mixed boundary cond...

متن کامل

Approximations and Bounds for Eigenvalues of Elliptic Operators

* Invited paper presented May 13, 1966, at the Symposium on Numerical Solution of Differential Equations, SIAM 1966 National Meeting at the University of Iowa, sponsored by the Air Force Office of Scientific Research. f Oxford University Computing Laboratory. : Eidgenhssische Technische Hochschule, Zurich, and IBM Zurich Research Laboratory, 8803 Rfischlikon-ZH, Switzerland. Eidgenhssische Tech...

متن کامل

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2021

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-021-01228-1